CORE-CT

Standards and Guidelines

Interface Standards

	

	[image: image16.emf]

[image: image1.jpg]

	

	Revision
	Author
	Date
	Comments

	Draft
	Neil Paku
	07/29/2002
	

	1
	Neil Paku
	10/29/02
	Added in schema for response messages

	2
	Saat N. Shaikh
	03/27/03
	Added Validator information

	3
	Mark D. Raymond
	03/28/03
	Cleanup Review

	4
	Neil Paku
	05/14/03
	Added addendum describing external system requirements for HTTP programmatic.

	5
	Mark D. Raymond
	06/05/03
	Updated Information regarding download of files from Supplier portal

	6
	Steve McCracken
	07/09/03
	Updated the HTTP programmatic sections starting in section 7.3. Added sections 8.1 Sample XML ASP driver file and

8.1.1 Sample XML parameter file for each command in the Appendix section.

	7
	Steve McCracken
	07/23/03
	Updated the HTTPS URL settings and the pgetrecent samples.

	8
	Mike Hubbell
	10/06/2003
	Added information about PGP Encryption for FTP transfers and use of DOIT’s public FTP server.

	9
	Kathleen Anderson
	10/16/2003
	Corrected address for Production Supplier Portal, clarified instructions for viewing/downloading .xml files.

41
Overview

42
Connection Protocols

43
Core-CT and External System File Hosting

54
File Formats

55
Schedule

56
Responsibilities

67
How to Access Core-CT

67.1
Tips for Managing Access

77.2
HTTP Online

77.2.1
Downloading Files from the Core-CT Supplier Portal

137.2.2
Uploading Files to the Core-CT Supplier Portal

177.3
HTTPS Programmatic

217.3.1
List Response Schema

247.3.2
Get Specific and Most Recent Response Schema

247.3.3
Put Response Schema

267.3.4
No Parameters or Unknown Command Response

277.3.5
Authentication Failed Response Schema

287.3.6
File Not Available Schema

307.4
FTP Online

307.4.1
PGP Encryption

307.5
FTP Programmatic

318
Appendix A Accessing Core-CT via HTTPS programmatic

338.1
Sample XML ASP driver file

358.1.1
Sample XML parameter file for each command

1 Overview

This document provides information on how to interact with the Core-CT Interface Architecture. The intended audience is primarily administrators and developers of external systems that interface with Core-CT. Additional readers include Core-CT developers, testers and liaisons.
The following items are addressed:

· Connection protocols.

· File hosting.

· File formats.

· Schedules.

· How to access Core-CT.
2 Connection Protocols

Core-CT offers four main protocols for exchanging files with other systems:

1. HTTP
2. HTTPS

3. Partner Initiated FTP

4. Core-CT Initiated FTP (see below for usage)

1. HTTP is available when Core-CT is responsible for picking up / dropping off files to other systems.

2. HTTPS using SSL 3 is the preferred method for exchanging files with any other system; both inbound and outbound.

3. Partner initiated FTP is available. The Core-CT FTP server (for Intranet users) resides within the DOIT protected network so network security is maintained. The DOIT FTP is outside the protected network and is available for Internet users. A Partner initiated FTP user will be provided a UserID and Password that they will use to access files for Core-CT. This may be used for both drop-off and pickup of files. (Put and Get)

4. Core-CT Initiated FTP is allowed when Core-CT can log in to an external system to drop-off or pick-up files. This is consistent with the State’s Enterprise Standards.
3 Core-CT and External System File Hosting
In general, Core-CT prefers to host interface files on Core-CT’s interface repository. External systems can download or upload files using HTTPS or FTP on their own schedule, and in accordance with the Core-CT batch schedule.

However, it may be the case that for certain systems, Core-CT is required to place or retrieve files from an external system. In this case and for retrieving files, it is expected that a scheduled time that the file is expected to be available from will be part of the interface agreement. This is to avoid polling of the other system’s repositories.

4 File Formats
In general, Core-CT expects to exchange files that are formatted in XML. Each file type for a given inbound interface has an XML Schema describing its format, which is shared between Core-CT and the external system. It is recommended to validate the XML files against this schema prior to uploading it. Schemas are in development and are subject to change. Core-CT will notify interfacing parties of schema changes.
Organizations with pre-existing interfaces may not have been changed to use XML during the initial phases of Core-CT. These interfaces will be assessed on a case-by-case basis and will be negotiated between Core-CT and the interfacing organization / system.

5 Schedule

It is expected that inbound interface files would arrive in Core-CT’s repository prior to the nightly interface processing session. For most external systems, this provides flexibility as to when the file is uploaded. XML files will be validated against the XML schema upon arrival. Fixed Format files will also be validated. If a file does not pass validation, it will be returned to the interface partner by the associated error return path.
For outbound files, Core-CT will generally make the files available as soon as they have been generated, again during the nightly interface processing session. Any files that need to be pushed to external systems will transfer during this session by default, unless otherwise specified. More details regarding the batch schedule will be released at a later time.
6 Responsibilities

The following table lists the responsibilities for Core-CT and external system developers:

	Action
	Responsible party

	Defining overall connection agreement (protocol, hosting, format, schedule)
	Both

	Maintenance of format
	Both

	Maintenance of schedule
	Both

	Development and maintenance of processes
	Core-CT for processing on Core-CT,

external organization for processing on external system

	Notification of variance from schedule
	Both

	Archiving
	Party that produces files. (Note: Core-CT retains all files sent to it, in error or otherwise. However, they may not always be available online as they’re regularly archived offline)

(Note: outbound and inbound relative to Core-CT – outbound files travel from Core-CT to the external organization.)
7 How to Access Core-CT

There are four ways you can access Core-CT to pick up and drop off files:

	Method
	Description

	HTTP Online
	Access Core-CT via the web to upload and download files.

	HTTP Programmatic
	Write a batch file to access Core-CT programmatically to upload and download files.

	FTP Online
	Intranet users – Login to Core-CT’s ftp server and access files.
Internet users – Login to DOIT’s ftp server and access files.

	FTP Programmatic
	Write a batch file to access files.

All methods require you to have a Core-CT user account. Your liaison will arrange this and forward the details on.
7.1 Tips for Managing Access

· Core-CT retains all files sent to it, whether they are in error or not. However, from time to time, files will be moved offline as they age. If access is required to these archived files, contact your Core-CT administrator.

· Users are not able to delete files.

· If you upload the wrong version of a file, upload the correct version prior to the batch cutoff deadline. Core-CT always selects the most recent version of a file for processing.

· File names are extremely important and must be completely correct in order to be processed.

· Character case is not important e.g. file.xml = FILE.XML = fIlE.XmL

· Your Core-CT administrator will coordinate schedules with you, including when you can upload and download files.

· Files uploaded via FTP are timestamped and registered by a scheduled process that runs regularly during the day. (Files received via HTTP are also timestamped, but use a different method to do so.) If you upload another version of a file, it will overwrite that existing file, unless it has been timestamped and registered. If this is to correct an error, that is fine because Core-CT always selects the most recent file and if your second upload occurs before the batch cutoff time, that file will be timestamped, registered and then will be processed.

7.2 HTTP Online

7.2.1 Downloading Files from the Core-CT Supplier Portal

Online access is very easy and is as follows:

1. Login to the Core-CT portal

Product Test Portal Addresses

	User Type
	Portal Signon Address

	All Users
	https://corect.ct.gov:17400/PSTPR/signon.html

Production Portal Address

	User Type
	Portal Signon Address

	All Users
	https://corect.ct.gov:10400/PSPRD/signon.html

[image: image2.wmf]
2. Click on “Interface Access” hyperlink on the Enterprise Menu
[image: image17.emf]

[image: image3.png]PeopleSoft
My Page GuestPage

Persanalize Content | Lavout

Enterprise Menu

D by Favorites

D workist
Interface Arcess
Change My Password
My Personalizations
iy Syster Profle
My Dictionary

Company News

Logged In Users can click the customize button to select your pagelet's content
sections

Submt artle
Vigw Ertre Publication

Healine News | Human Resources News | information Tectnology News | Everts

" eoplesoft

3. Click on a download tab to access a file.

[image: image18.emf]

[image: image4.png]{ Uploads \(Davinioads |

Upload/Download For VP1:

le Name Created Datetime
1/ IN_2003-04-10-12_35_320L. 04110/2003 12:38:32
2 IN_2003-04-10-13_31_03m1 04110/2003 13:31:03
3in_2003-04-10-12_30_0BXmL. 04110/2003 12:30:08
4in_2003-04-10-12_30_1 7.XmL. 04/10/2003 12:30:17

Add Attachment

Uploads | Downloads

[image: image19.emf]

[image: image20.emf]

[image: image5.png][UBIEHE " Downioads |
Upload/Download For VP1:

ViewDownload File Name Created Datetime
1 View/Download OUT_2003-04-08-12-00-00.0K 0410/2003 12:30:33
2 ViewiDownload OUT_2003-04-08-12-00-00.XER 0411072003 12:34:25
3 View/Download OUT_2003-04-08-20-54-00.0K 04110/2003 12:30:30

Uploads | Downloads

4. Select the View / Download hyperlink for the file you wish to download.
[image: image6.png]‘Yo have chasen to dowrlaad a filefrom this locatian.

(0UIT_2003.04.09-12:00-00.ok from corect 1eb002.dot.

What would you ke o do with his le?

€ Dpen ths flefrom its curent location
& Save this feto disk

5

ok | Cood | Maeie

5. Select OK to save the file to the location you specify in the next page.
[image: image7.png]save as

Saven

3 dowrioads -] «®ckE-

Fiepme: =
Saveastpe [HL Document =

Save

=N}

An alternative to saving the file via the link is to view the file and cut and paste the content:

Note: Depending on the browser, you may get extraneous characters such as the rendering below where Microsoft Internet Explorer adds the minus sign. This will not affect XML parsing that adheres to the XML standard and your parsing rules. Check your system for behavior.
7.2.1.1 View/Download different file types from the Portal

When running interfaces, users can receive a variety of output file types. These file types can include .XML, .TXT, .OK, .CSV and .XER. All of these output file types will be available for viewing/downloading from the Supplier Portal. However, there are some special considerations to keep in mind when view/downloading. Please see instructions below on each different file type.

· .OK and .XER files
· When view/downloading the .OK and .XER files, a window will display prompting the user to either open the file or save it to disk. This will always occur with these file types. The recommended action is to Save this file to disk.

[image: image8.png]Download

3

x

‘Yo have chasen ta dowrlaad a filefrom this locatian.

ABO_2003.06-02_17-02.59.ok from corect-web002 coit

‘What would you ke o do with his le?

" Open s fle fom s current location
& Save this fle o dik.

I Alisays ask before opening this tpe of il

= | fhoim

· .TXT and .XML files
· When view/downloading the .XML files, there are two possible results.

1. The files open in the same manner as .OK/.XER file types.

· When this occurs, choose to Save this file to disk and save on your local location.

2. The file opens in the web browser. If this occurs, some configuration will need to take place to ensure that the files open in the same manner as .OK and .XER. The web browser is unable to accommodate the opening of some of the very large files as are produced in the .TXT and .XML outputs.

a) Open Windows Explorer.

b) Navigate to Tools > Folder Options > File Types.

c) Locate file type = XML.

d) Delete the association of the XML file type to the program (If the Delete button is activated, click it to Delete the association. If it is not, there should be a Restore button. Click the Restore button and then click the Delete button.).
e) Create a new file type association.

f) Enter a value of XML

g) Associate .XML file types with one of the following programs: XMLSPY, Notepad, or WordPad.

h) Save the changes.

i) Repeat the steps for .TXT using the following programs for association: Notepad or WordPad.

· This configuration process will help ensure that the window prompting open file from current location or save this file to disk is displayed.

· If the user selects to open a .TXT or .XML file on their computer and selects Always use this program for this file type, the user has just associated the file type with a program. This may cause .TXT or .XML files to be opened within the browser. Complete the above configuration to undo changes.

7.2.2 Uploading Files to the Core-CT Supplier Portal

To upload a file, follow the following steps

1. Login to Supplier Portal (follow steps 1 and 2 from previous diagrams).

2. Click on the Add Attachment button to open the Attachment Window. From the Attachment Window choose the Browse Button to launch the Choose File Window.
[image: image9.wmf]

[image: image10.png]Browse.
Uploag | cancel

3. Navigate to the location of the source file, select it and click on the Open button. [image: image11.png]EEEEr

| ook~ 5 - © B @] @seuch

Favortes @ity |[A- & =1 H R

| adress [&] http:/jcorect-apoos. o state.ct.us:8360/pspiPSDEV/SUPPLIERSUPP/c/EDI_MANAGER.CT_FILE_INSTANCE GBL

D My Favorites

D Browse Content

D Manage Content

D External Senvices

b PeopleSoft

D Portal Administration
D worklist

D Tree Manager

D Reporting Tools
D PeopleTools

Change Wy Password
My Personalizations
iy Syster Profle

My Dictionary

Browse.
Upload | cancel

[r=as 2]
Look i [Deskiop Y« & ok E-
By bocaments T
Sy conputer Deatchsciswinn o
BBy Netwrk lces Diatcrtechbesarkizh
I35 tiew oot st fesio
153 s Toos S frods
C35 Configuration 3 Core-CT Project Management.
[Sapcr sutt 155 Confiratonsts
|SIprrviow sttt HpaveCarstron_resume toto.coc
PN |25 1 o prod support Biopnior
= e Brose Troutlestoctig o
S s o portal Fieserver Comption v.coc
K — |

File name: < Dpen
Filesof ype: [Fies () < Cancel

New Window | Help

[v

4. The selected file’s full path and name will appear in the text box. Click the Upload button

[image: image12.png]A Interface Access - Microsoft Internet Explorer MEE

| cosk -5 - QO (| @esch ravorees Brisory | B & = B R

| Aderess [&] http:/jcorect-apoos. ot state.ct.us:8360/pspiPSDEV/SUPPLIER SUPP/c/EDI_MANAGER.CT_FILE_INSTANCE GBL

New Window | Help

Dy Favories
5 e ot MACTEPRPTOO Ll | _Browse.. |
D Extemal Senices Unioad |_cancel

D PeopleSot

D Portal Administation

D Workdist

D Tree Manager

b Reporiing Tools

b PeopleTools

Change Wy Password
My Personalizations
iy Syster Profle

My Dictionary

&) [B Local mtranet

5. Once uploaded into the Portal the file name and date will appear on the File Upload tab.
For inbound interfaces, after XML files are uploaded (and registered), but before they are moved to the processing location, they are validated. Reports are created detailing the validity status (valid file creates a report that ends with “.ok” extension, invalid reports end with “.xer” extension). Outbound interfaces will be set up to make these report files available. The following diagram illustrates inbound interface processing flow.
[image: image13.wmf]XML Interface File

xxx.XML

XML file hits inbound

file location via FTP

or HTTP

File is checked for

viruses

XML Validator

Executed

Lookup interface

record

Locate Schema

Validate against

schema

XML Interface

Schema File

xxx.XSD

Reject based

on format

errors?

File Mover

(From Inbound

Staging to

Processing)

File Mover

(To Inbound

Staging)

App Engine

Program

File Mover

(Cleanup

Processing

Folder)

File Mover

(File Outbound)

Validator Error File

xxx.XER

Successful

Validator File

xxx.OK

Error Logs and/or

XML files

xxx.LOG or

xxx.TXT and/or

xxx.XML

External

System

Agency/ Vendor loads

file in error to their

system & resubmits

once corrections have

been made

No

Yes

SQR Report

Program

Report

xxx.PDF

Agency/ Vendor

accesses error files, log

files, and reports via

FTP or HTTP for review

Outbound interface processing does not involve validation at this time.
7.3 HTTPS Programmatic
(Caution: To access Core-CT via https programmatic, you need to ensure that you handle SSL certificates and the http conversation correctly. This requires complex coding on your system: see Appendix A for more detail.)

Core-CT provides the following API that systems can use to access their files programmatically. All requests must be made using SSL enabled HTTP 1.0 and the POST method. GET methods will not be accepted. In addition API utilizes an XML interface file to pass the valid command to the XML interface. Please note there are value found after the /xmllink/PSTPR/ is the database name, with that said, the PSTPR is the testing environment where PSPRD is the production database.
	To …
	Send this request

	Get a list of the downloadable, and uploaded files
	https://corect.ct.gov:17400/xmllink/PSTPR/CT_XML?&userid=aaa&pwd=bbb&runservice=yes
The following is the sample XML Interface file used to pass the valid plist command,

command=plist
userid=aaa

password=bbb
<<?xml version="1.0"?>

 <!-- Comment Section -->

 <application>

 <config_parameters>
 <userid>aaa</userid>

 <password>bbb</password>
 <command>plist</command>

 </config_parameters>

 </application>

where xxx is an address provided by your liaison, aaa is your Core-CT username bbb is your Core-CT password, and PIA is the database environment to interface with.
Please see Appendix A Accessing Core-CT via HTTPS programmatic

	Download a specific file
	https://corect.ct.gov:17400/xmllink/PSTPR/CT_XML?&userid=aaa&pwd=bbb&runservice=yes
The following is the sample XML Interface file used to pass the valid pget command,

command=pget

userid=aaa

password=bbb
filename=ccc

<<?xml version="1.0"?>

 <!-- Comment Section -->

 <application>

 <config_parameters>
 <userid>aaa</userid>

 <password>bbb</password>
 <command>pget</command>
< <filename>A_2003-04-29_13-04-23.XER</filename>
 </config_parameters>

 </application>

where ccc is your specific filename, including the timestamp.

Please see Appendix A Accessing Core-CT via HTTPS programmatic

	Download the most recent file of a type
	https://corect.ct.gov:17400/xmllink/PSTPR/CT_XML?&userid=aaa&pwd=bbb&runservice=yes
The following is the sample XML Interface file used to pass the valid pgetrecent command,

command=pgetrecent

userid=aaa

password=bbb
filename=ddd

<<?xml version="1.0"?>

 <!-- Comment Section -->

 <application>

 <config_parameters>
 <userid>aaa</userid>

 <password>bbb</password>
 <command>pgetrecent</command>
< <filename>CT_TEST_IN_OUT_A_XER</filename>
 </config_parameters>

 </application>

where ddd is a mask of the filename. The mask is the filename without the timestamp but with the extension. For example, if you have two files,

“CT_filename_2001-01-01_00-00-00.xml” and “CT_filename_2002-02-02_00-00-00.xml”,

ddd would be “CT_filename.xml”.

The timestamp portion of the name represents (year-month-date_24hour-minute-second) .Because the second file’s timestamp date is just on midnight at the beginning of the 2nd of February, 2002, and whereas the first file’s date is the 1st of January, 2001, you would receive the file “CT_filename_2002-02-02_00-00-00.xml”.
Please see Appendix A Accessing Core-CT via HTTPS programmatic

	Upload a file
	https://corect.ct.gov:17400/xmllink/PSTPR/CT_XML?&userid=aaa&pwd=bbb&runservice=yes
The following is the sample XML Interface file used to pass the valid pput command,

 <?xml version="1.0" ?>

- <!-- Comment Section --> [image: image14.png]

 <application>
 <config_parameters>
 <userid>aaa</userid>
 <password>bbb</password>
 <command>pput</command>
 <filename>A.XML</filename>
 </config_parameters>
- <data>
- <employees>
 <employee>
 <oprid>AMIDDLETON</oprid>

 <emplid>123</ emplid >

 <emalid >AMIDDLETON@company.com</<emalid >

 </employee>
 <employee>
 <oprid>CTAPI001AGO </oprid>

 <emplid123</emplid />

 <emalid>CTAPI001AGO@company.com />emalid>
 </employee>
 </employees>
 </data>
 </application>
command=pput
user=aaa

password=bbb
Filename = Interface File name

Data = The data section is XML contents of the file being transferd

Construct a response body according to the HTTP 1.0 specification for “multipart/form-data”. See Appendix A for advice on constructing these requests and links to resources.

	
	

You will receive an XML 1.0 response (which can be ignored) that describes the result of the action pput, and when your request is malformed in the following ways:
· Missing parameters

· Unknown command

· Invalid username and password

· Response body size greater than the Core-CT file size limit, currently set to 10MB. If you are uploading files whose combined size is greater than 10MB, please send the files in multiple requests, singularly if necessary in order to keep the body size below 10MB. If this limit is still reached, please contact your Core-CT liaison.

The other requests will return either the list or the file.

7.3.1 List Response Schema

Example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<application>

<header>

<name>core-ct interface</name>

<messagetype>file-list</messagetype>

<date>2002-10-02_06-54-05</date>

</header>

<data>

<downloads>

<file><filename>CT_PAOINTSUM_2002-09-16_15-58-51.xml</filename><date>Mon Sep 16 15:58:51 EDT 2002</date></file>

</downloads>

<uploads>

<file><filename>CT_EPIBENDTL_2002-10-01_07-07-35.xml</filename><date>Tue Oct 01 18:59:32 EDT 2002</date></file>

</uploads>

</data>

</application>

Schema:

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v5 U (http://www.xmlspy.com) by Neil Paku (Accenture) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="application">

<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="header">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="messagetype" type="xs:string"/>

<xs:element name="date" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="data">

<xs:complexType>

<xs:sequence>

<xs:element name="downloads">

<xs:complexType>

<xs:sequence>

<xs:element name="file" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="filename" type="xs:string"/>

<xs:element name="date" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="uploads">

<xs:complexType>

<xs:sequence>

<xs:element name="file" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="filename" type="xs:string"/>

<xs:element name="date" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
7.3.2 Get Specific and Most Recent Response Schema

The following is an example of an XML file sent in response to the request. Contact your liaison for the file layout for the particular interface file that you need to download.
Example:

<?xml version="1.0" encoding="ISO-8859-1"?>

 <record>

 CT_PAOINTSUM_2002-09-16_15-45-27.xml

 <size>

 10

 </size>

 </record>

Schema: N/A

7.3.3 Put Response Schema

Example:

<?xml version="1.0" encoding="ISO-8859-1"?>

 <application>

 <name>core-ct interface</name>

 <messagetype>result-file-upload</messagetype>

 <header>

 <date>2002-10-02_06-54-05</date>

 </header>

 <data>

 <fileregistered>

 <name>CT_EPIBENDTL_2002-10-02_06-54-05.xml</name>

 </fileregistered>

 <filenotregistered>

 <name>invalid.xml</name>

 </filenotregistered>

 </data>

 </application>

Schema:

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v5 U (http://www.xmlspy.com) by Neil Paku (Accenture) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="application">

<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="header">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="messagetype" type="xs:string"/>

<xs:element name="date" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="data">

<xs:complexType>

<xs:sequence>

<xs:element name="fileregistered">

<xs:complexType>

<xs:sequence>

<xs:element name="name" maxOccurs="unbounded">

<xs:complexType/>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="filenotregistered">

<xs:complexType>

<xs:sequence>

<xs:element name="name" maxOccurs="unbounded">

<xs:complexType/>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
7.3.4 No Parameters or Unknown Command Response
This response is formatted as plain text since the service has no way of knowing whether the request was made online or programmatically.
Example:

“Unknown request. Please contact your Core-CT administrator.”
Schema:

N/A
7.3.5 Authentication Failed Response Schema

Example:

<?xml version="1.0" encoding="ISO-8859-1"?>

 <application>

 <header>

<name>core-ct interface</name>

<messagetype>result-authentication</messagetype>

 <date>2002-10-02_06-54-05</date>

 </header>

 <data>

 <message>Authentication failed. Username and password are case sensitive. Please contact your Core-CT administrator if the problem persists.</message>

 </data>

 </application>

Schema:

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v5 U (http://www.xmlspy.com) by Neil Paku (Accenture) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="application">

<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="header">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="messagetype" type="xs:string"/>

<xs:element name="date" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="data">

<xs:complexType>

<xs:sequence>

<xs:element name="message" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
7.3.6 File Not Available Schema
This response is used when a file is registered for the user but is not available in the file system.
Example:

<?xml version="1.0" encoding="ISO-8859-1"?>

 <application>

 <header>

<name>core-ct interface</name>

<messagetype>result-file-notavailable</messagetype>

 <date>2002-10-02_07-22-27</date>

 </header>

 <data>

 <message>The requested file is not available.

Please contact your Core-CT administrator.</message>

 </data>

 </application>

Schema:

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v5 U (http://www.xmlspy.com) by Neil Paku (Accenture) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="application">

<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="header">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="messagetype" type="xs:string"/>

<xs:element name="date" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="data">

<xs:complexType>

<xs:sequence>

<xs:element name="message">

<xs:complexType/>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
7.4 FTP Online

Users accessing their files this way use an FTP client, such as Fetch, Cute-FTP or the Microsoft Windows built-in FTP client. A couple of points to note about this type of access:

· The Core-CT liaison will supply you with a username and password to access Core-CT’s FTP server (Intranet users) or DOIT’s FTP server (Internet users).

· You will only have access to one directory, which is your home directory and is the one that you see directly upon login.

· You can get and put any file in your directory, but you cannot delete files.
7.4.1 PGP Encryption

PGP encryption is available to Partners exchanging files via FTP. Partners wishing to exchange encrypted files must exchange public keys with Core-CT. Core-CT uses GNU Privacy Guard for PGP encryption/decryption. GnuPG is compliant with OpenPGP standards, as well as recent versions of McAfee/Network Associates’ PGP software. Core-CT will transmit files that are signed and encrypted, and you will be expected to do the same.

· The Core-CT liaison will supply you with the Core-CT public key for use when encrypting files you send and verifying signed files you receive.
· Encrypted files are expected to contain the original filename, with “.pgp” appended, i.e. an encrypted version of TEST.XML would be transferred as TEST.XML.pgp.
7.5 FTP Programmatic

Users accessing their files this way still use an FTP client but typically invoke it using a batch script. The same rules for FTP online apply to programmatic access as well.

8 Appendix A Accessing Core-CT via HTTPS programmatic

Using this approach should be considered with due caution as it involves a much larger development effort than for example setting up an ftp script, since you need to effectively code the translation between the contents of an http response and the file, and you also need to mimic many of the items handled by the simpler commands of ftp. This is a complex set of requirements that should not be taken lightly.

For this reason, it is recommended that where possible, administrators consider providing ftp access to their site and permit Core-CT to pick up or drop off files instead, as the effort on the external system’s part is much lower. Core-CT can access external systems using ftp (or secure ftp if necessary) and this should be considered a preferred method.
In order to set up your system to access Core-CT using https programmatically, you will most likely need to setup a program that effectively mimics what a web browser would do when accessing Core-CT online. This includes correctly forming the http headers and bodies and managing SSL certificate interchange.
There are a limited number of libraries available both for a range of prices that can provide this functionality. For example, O’Reilly and Associates has a Java library that can make http requests from a Java client.
The following is a list of what administrators would need to set up if using O’Reilly’s library:

· Engage an experienced Java analyst programmer.

· Set up an environment in which java programs can run. Normally, this involves obtaining Sun’s Java 2 SDK which is available for free from http://java.sun.com.

· Purchase O’Reilly’s http client library and install it in your java environment. This can be found at http://www.servlets.com/index.tea
· Design and code a java program that uses the http client library to access Core-CT’s servers using SSL encryption.

· Obtain the appropriate login information from your Core-CT liaison and test your software.

· Set up your java program in your batch schedule to upload or download files with Core-CT.

For any other language where an http library is available, your activities will be pretty much the same as above. Another library that has a broad range of language bindings including Perl, C/C++, Java, and Basic, is Libcurl found at http://curl.haxx.se/libcurl/
The custom program you develop will need to take care of certain logic items:

· Track which files have been downloaded in order to know whether there are any “new” files available for download. The list function provides the list of what is available for download.

· Handle error conditions such as non-availability of the Core-CT environment, and failed uploads and downloads.
· Correctly construct the message headers to make the requests.

· Correctly construct the message body in the case of file uploads, including base 64 encoding.

· Extract the file content from the message body in the case of file downloads and save to a local file.

· Use the library’s functions to send the requests via SSL.

Using this approach should be considered with due caution as it involves a much larger development effort than for example setting up an ftp script, since you need to effectively code the translation between the contents of an http response and the file, and you also need to mimic many of the items handled by the simpler commands of ftp. This is a complex set of requirements that should not be taken lightly.
For this reason, it is recommended that where possible, administrators consider providing ftp access to their site and permit Core-CT to pick up or drop off files instead, as the effort on the external system’s part is much lower. Core-CT can access external systems using ftp (or secure ftp if necessary) and this should be considered a preferred method.
8.1 Sample XML ASP driver file

The following example code is provided as is and can be used to pass the XML command parameter file to the XML interface. By changing the file found on the var DataToSend =loadXML('file://e:/atemp/slerp/plistin.xml'); line end users can control the command performed by the XML interface. Please see the sample xml parameter file for each command.
<html>

<head>

<title>XMLLINK Tester</title>

<script language=javascript>

function GetXML() {

//++

// Sever Address in our sample we are using PSDEV PIA

var serveraddress = "https://corect.ct.gov:17400/xmllink/PSTPR/";

// PeopleSoft UserId Change for you PeopleSoft ID

var userid = "aaa";

// PeopleSoft Password Change for your userID

var pwd = "xxxe";

// CoreCT XML Interface

var pgmname = "CT_XML/?";

// XML File Input, please use template, and change location

var DataToSend =loadXML('file://e:/atemp/slerp/plistin.xml');

//++

// Debuging Section uncomment to see the values passed to the

// XML API.

 // var test

 // test = serveraddress + pgmname+"&userid="+userid+"&pwd="+pwd+"&disconnect=y&postDataBin=y"

 // window.alert (test)

 // window.alert(DataToSend);

 //++

 //++

 document.all['PageText'].innerHTML = "XMLLINK

URL = "+serveraddress+"

UserID = "+userid+"

Program = "+pgmname;

// Invoke MS XMLHTTP Object

var xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

xmlhttp.Open("POST",serveraddress + pgmname+"&userid="+userid+"&pwd="+pwd+"&disconnect=y&postDataBin=y",false);

// Set the Content Type

xmlhttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

// Send the XML Parameter File

xmlhttp.send(DataToSend);

//++

// The Following is to show the output of the passed command

// and can be modified to meet the necessary client requirements

//++

 _w = window.open("","","height=400,width=400,scrollbars=1");

 _w.document.open();

 _w.document.write('<html><head><title>Results Window</title></head><body>');

 _w.document.write('<XMP>');

 _w.document.write(xmlhttp.ResponseText);

 _w.document.write('</XMP>');

 _w.document.write('</body></html>');

 _w.document.close();

//++

}

function loadXML(sURi) {

// Load the passed XML File used for parameters to the interface

var xmldoc= new ActiveXObject("MSXML2.DOMDocument.3.0");

 xmldoc.async = false;

xmldoc.load(sURi);

return xmldoc.xml;

}

</script>

</head>

<body bgcolor="#FFFFFF" onLoad="GetXML();">

Running Link...

</body>

</html>

8.1.1 Sample XML parameter file for each command

plist

<<?xml version="1.0"?>

 <!-- Comment Section -->

 <application>

 <config_parameters>

 <userid>aaa</userid>

 <password>bbb</password>
 <command>plist</command>

 </config_parameters>

 </application>

pget

<<?xml version="1.0"?>

 <!-- Comment Section -->

 <application>

 <config_parameters>

 <userid>aaa</userid>

 <password>bbb</password>
 <command>pget</command>
 <filename>A_2003-04-29_13-04-23.XER</filename>
 </config_parameters>

 </application>

pgetrecent

<<?xml version="1.0"?>

 <!-- Comment Section -->

 <application>

 <config_parameters>

 <userid>aaa</userid>

 <password>bbb</password>
 <command>pgetrecent</command>
 <filename>CT_TEST_IN_OUT_A_XER</filename>
 </config_parameters>

 </application>

pput

 <?xml version="1.0" ?>

- <!-- Comment Section --> [image: image15.png]

- <application>
- <config_parameters>

<userid>aaa</userid>

<password>chl6trie</password>

<command>pput</command>

<filename>A.XML</filename>

</config_parameters>
- <data>
-
<employees>
 <employee>
 <oprid>AMIDDLETON</oprid>

 <emplid>123</ emplid >

 <emalid >AMIDDLETON@company.com</<emalid >

 </employee>
 <employee>
 <oprid>CTAPI001AGO </oprid>

 <emplid123</emplid />

 <emalid>CTAPI001AGO@company.com />emalid>
 </employee>
 </employees>
</data>
 </application>
Core-CT TIPS

Interface

External Systems

�

�

�

�

�

Core-CT TIPS - Interface - External Systems.doc
Page 1 of 37
10/20/03

